油脂安全

DOI: 10. 19902/j. cnki. zgyz. 1003 - 7969. 210544

广西梧州市土榨花生油中黄曲霉毒素 B_1 膳食暴露风险评估

李 亚1,梁剑锋1,柯立坚2,钟水桥2

(1. 梧州学院 食品与制药工程学院(六堡茶现代产业学院),广西 梧州 543002; 2. 梧州市食品药品检验所,广西 梧州 543002)

摘要:为了解梧州市居民通过小作坊土榨花生油摄入黄曲霉毒素 $B_1(AFB_1)$ 的膳食暴露风险,随机抽取梧州市 3 区、4 县小作坊生产散装土榨花生油共 496 份,检测其 AFB_1 含量,应用点评估方法评估梧州市居民的土榨花生油 AFB_1 膳食暴露风险。结果表明: 496 份土榨花生油中, AFB_1 检出率为 40.3%,含量在 $0.12 \sim 109.00$ μ g/kg 之间,平均含量为 3.63 μ g/kg,超标率为 4.64%,居民平均 AFB_1 膳食暴露量为 1.67 ng/(kg·d),平均暴露限值(MOE)为 240;男性居民平均 AFB_1 膳食暴露量低于女性居民,城市居民低于农村居民, AFB_1 对女性居民造成的风险高于男性居民,对农村居民造成的风险高于城市居民。风险评估结果表明,梧州市居民通过土榨花生油摄入 AFB_1 潜在风险较高。

关键词:土榨花生油;黄曲霉毒素 B1;暴露评估

中图分类号:TS225.1;TS207.7 文献标识码:A 文章编号:1003-7969(2022)11-0080-05

Dietary exposure risk assessment of aflatoxin B_1 in native pressed peanut oil in Wuzhou, Guangxi province

LI Ya¹, LIANG Jianfeng¹, KE Lijian², ZHONG Shuiqiao²

(1. School of Food and Pharmaceutical Engineering (Liupao Tea Modern Industry College),
Wuzhou University, Wuzhou 543002, Guangxi, China;
2. Wuzhou Food and Drug Inspection Institute,
Wuzhou 543002, Guangxi, China)

Abstract: In order to understand the dietary exposure risk of aflatoxin B_1 (AFB₁) of Wuzhou residents through native pressed peanut oil from small workshops, a total of 496 batches of native pressed peanut oils in three districts and four counties of Wuzhou city were randomly selected and tested the AFB₁ content, and the point assessment method was applied to assess the dietary exposure risk of Wuzhou residents to AFB₁ in native pressed peanut oil. The results showed that the detection rate of AFB₁ in 496 batches of native pressed peanut oil was 40.3%, and the content ranged from 0.12 μ g/kg to 109.00 μ g/kg, with an average content of 3.63 μ g/kg and an exceedance rate of 4.64%, and the average dietary exposure of AFB₁ was 1.67 η g/(kg · d), with a mean margin of exposure (MOE) of 240. The average dietary exposure of AFB₁ was found to be lower among male residents than female residents, and lower among urban residents than rural residents, while the risk of AFB₁ was found to be higher among

收稿日期:2021-09-07;修回日期:2022-06-23

基金项目:广西高校中青年教师科研基础能力提升项目 (2021KY0681)

作者简介:李 亚(1983),女,高级工程师,硕士,研究方向为食品质量安全与检测分析(E-mail)23170570@qq.com。通信作者:梁剑锋,副教授,高级工程师(E-mail)ljf117117@163.com。

female residents than male residents, and higher among rural residents than urban residents. The risk assessment results indicate that the potential risk of AFB₁ intake by Wuzhou residents through native pressed peanut oil is high.

Key words: native pressed peanut oil; aflatoxin B_1 ; exposure assessment

黄曲霉毒素(Aflatoxin)是由黄曲霉、寄生曲霉等真菌代谢产生的一类真菌毒素,是一种剧毒物质,对人的肝脏组织有破坏作用,严重时可导致肝癌甚至死亡^[1-3]。目前发现黄曲霉毒素主要存在于食用油、粮食、谷物及其制品中,以黄曲霉毒素 B₁(AFB₁)最为常见。AFB₁具有高毒与强致癌性,进入人体后极易致肝癌和死亡,早在 1993 年 AFB₁就被世界卫生组织(WHO)的癌症研究机构划定为 I类强致癌物^[4-6]。由于 AFB₁的弱极性和非常稳定的化学性质,其容易在花生油、玉米油中富集,而且经简单加热等处理方法很难被去除^[7-8],所以花生油、玉米油中 AFB₁超标问题较为突出,具有较高食品安全风险。

两广地区居民有食用土榨花生油的传统习惯, 但受小作坊生产条件和工艺的限制,土榨花生油普 遍存在 AFB 易超标现象,并严重影响消费者身体健 康[9-11]。卢宇芳等[12]研究了2015年南宁、柳州、桂 林、梧州等广西14个城市的餐馆、小吃店、快餐店、 食堂等餐饮环节不同包装食用植物油的 AFB,含量, 结果发现,仅在花生油和调和油中检出 AFB1,检出 率分别为16.67%和2.35%,超标样品全部为花生 油,超标率为7.69%。王春双等[13]评估了南宁市 粮油食品中AFB」的暴露风险,发现AFB,暴露限值 由低到高依次是花生油、玉米碾磨制品、大米、黄豆, 花生油是4种粮油食品中人群AFB」膳食暴露贡献 率最高的食品,贡献率为84.19%。宋美英等[14]研 究了广东小作坊生产花生油中 AFB, 膳食暴露及风 险,发现2017年广东地区小作坊花生油AFB,超标 率为11.8%,检出率为56.9%。2015年5月中央 电视台《焦点访谈》栏目记者暗访广西梧州、广东肇 庆两地土榨花生油小作坊,并将暗访过程中随机购 买的19批次小作坊土榨花生油送检,发现其中有6 批次样品 AFB₁超标, AFB₁超标率高达 31.6%。经 央视报道后,梧州土榨花生油 AFB 超标问题成为当 年全国食品安全关注焦点[15],之后各地食品安全监 管部门实施了一系列针对小作坊土榨花生油 AFB, 超标问题的专项整治行动。为科学评价广西梧州地 区土榨花生油 AFB₁超标问题专项整治的效果,了解 梧州市居民通过土榨花生油摄入 AFB₁的膳食暴露 风险,本文对2021年梧州市3区、4县收集的土榨 花生油样品中 AFB,污染情况进行风险分析及评估, 以期为食品安全监管部门下一步制订科学监管方案 及风险管理提供理论参考。

1 材料与方法

1.1 试验材料

散装土榨花生油,2021 年 1—8 月于梧州市 3 区、4 县随机抽取的小油坊生产,共 496 份;预包装花生油,梧州当地超市购买,共 6 份。

AFB₁标准物质(质量浓度 3.2 μ g/mL),美国 Supelco 公司;乙腈、甲醇(色谱纯),美国 Fisher 公司;甲酸(色谱纯),上海安谱公司。

LC1290 - QQQ6490 液质联用仪,美国安捷伦公司; AllegraX - 15R 冷冻高速离心机,美国贝克曼库尔特有限公司; Multi Reax 涡旋混合器,德国Heidolph公司; Million Q型超纯水器,美国Milli - pore公司; Quintix224 - 1CN 电子天平,德国赛多利斯公司。

1.2 试验方法

1.2.1 AFB₁的测定

按照 GB 5009. 22—2016《食品安全国家标准食品中黄曲霉毒素 B 族和 G 族的测定》中第一法同位素稀释液相色谱 - 串联质谱法进行花生油中AFB₁的检测,方法的检出限(LOD)为 0.1 μg/kg。在检测过程中,按照 GB/T 35655—2017《化学分析方法验证确认和内部质量控制实施指南色谱分析》要求,仪器每进样检测 20 个样品后检测一个空白样品和一个低浓度标准溶液样品,以确保仪器没有被样品污染且加标回收率在 90% ~ 110% 之间。

1.2.2 膳食暴露风险评估

1.2.2.1 膳食暴露量的计算

采用点评估方法,通过梧州市 7 县(区)土榨花生油中 AFB_1 污染平均水平、居民消费量和不同年龄段居民体质量等数据来计算膳食暴露量 $(x)^{[16]}$,见公式(1)。

$$x = rc/m \tag{1}$$

式中:r 为食用油摄入量,g/d;c 为土榨花生油中 AFB₁含量, $\mu g/kg$;m 为体质量,kg。

1.2.2.2 分析对象分组及膳食摄入量的确定

根据《2010—2012 广西壮族自治区居民营养健康状况调查报告》中广西居民体检数据^[17],将分析人群分为:6~11 岁城市男性(平均体质量27.99 kg)与农村男性(平均体质量 27.99 kg)组、6~11 岁城市女性(平均体质量 27.33 kg)与农村女性(平均体质量27.33 kg)组;12~14 岁城市男性(平均体质量48.07 kg)与农村男性(平均体质量39.66 kg)组、12~14岁城市女性(平均体质量44.68 kg)与农村女性(平均体质量39.95 kg)组;15~17 岁城市男性(平均体

质量 58. 37 kg) 与农村男性(平均体质量 51. 02 kg) 组、15~17岁城市女性(平均体质量 48. 43 kg) 与农村女性(平均体质量 48. 43 kg)组;18~60岁城市组(平均体质量 59. 27 kg)、18~60岁农村组(平均体质量 54. 47 kg);60岁以上城市组(平均体质量 59. 27 kg)、60岁以上农村组(平均体质量 54. 47 kg)。

参考《2010—2012 广西壮族自治区居民营养健康状况调查报告》数据,根据项目研究情况采用广西居民膳食 B 模式数据^[17]:广西居民食用油人均摄入量为25.99 g/(kg·d),城市居民食用油人均摄入量为27.03 g/(kg·d),农村居民食用油人均摄入量为25.18 g/(kg·d),男性居民食用油人均摄入量为26.31 g/(kg·d),女性居民食用油人均摄入量为25.72 g/(kg·d);18 岁以下居民食用油人均摄入量为25.72 g/(kg·d);18 岁以下居民食用油人均摄入量为26.48 g/(kg·d),60 岁以上居民食用油人均摄入量为26.29 g/(kg·d)。

1.2.3 风险分析

食品添加剂联合会专家委员会(JECFA)指出, 黄曲霉毒素是无阈值的遗传性致癌物,在任何水平 暴露都有不同程度风险^[18]。本试验采用暴露限值 (MOE)法对土榨花生油中 AFB₁进行暴露风险评 估。当 MOE 小于 10 000 时,可认为具有较高公共 卫生关注度。应当优先采取风险管理措施;当 MOE 大于 10 000 时,认为具有较低公共卫生关注度; MOE 越小,说明有害物质对人群健康造成的危害风 险越高^[19]。MOE 计算见公式(2)。

$$E_{\text{MO}} = B/E \tag{2}$$

式中: E_{MO} 为暴露限值;B为出现10% 肝癌发生率的95% 基准剂量置信区间下的限量,本文采用2020

年欧盟发布食品中黄曲霉毒素风险评估报告中的 $0.40 \, \mu g/(kg \cdot d)^{[20]}; E$ 为研究人群的膳食暴露量。 1.2.4 数据处理

试验所有数据录入 Excel 2010 数据表,采用 SPSS 20.0 软件进行统计分析。本文采用世界卫生组织(WHO)推荐的代替法对低于方法检出限样品进行数据处理: 当未检出数据比例小于或者等于60%,所有检测结果小于 LOD 的样品结果以 1/2 LOD 计算。

2 结果与分析

2.1 梧州市土榨花生油 AFB 含量分布(见表 1)

由表1可知:496份样品中有200份检出AFB₁,检出率为40.3%,含量范围为0.12~109.00 μg/kg;梧州市7个县(区)中有5个县(区)出现AFB₁含量超出GB2761—2017花生油AFB₁限量20 μg/kg现象,超标率在1.59%~14.81%之间,检出AFB₁最高值分别为国家食品安全标准限量(20 μg/kg)的1.76、2.86、5.45、3.24、1.83倍;全市土榨花生油AFB₁平均含量为3.63 μg/kg,超标率为4.64%;比较AFB₁平均含量和超标率发现,城市比农村低,检测出含量最高的样品来自农村,说明整治农村的小作坊土榨花生油AFB₁超标问题,将是下一步土榨花生油食品安全监管工作重点。

对比组的 6 份预包装花生油中有 3 份检出 AFB_1 ,含量在 0. 32 ~ 2. 88 $\mu g/kg$ 之间,平均值为 0. 18 $\mu g/kg$ 。将预包装花生油与梧州市 7 个县(区) 的土榨花生油比较,县(区)2、3、4 和全市土榨花生油的 AFB_1 平均含量极显著高于预包装花生油的 AFB_1 含量(t 检验,p < 0. 01),可见土榨花生油受 AFB_1 污染比预包装花生油大,相对具有较高食用安全风险。

表 1 梧州市土榨花生油中 AFB₁含量检测结果

抽样地区	样品数 (份)	检测值范围/ (μg/kg)	平均值/ (µg/kg)	P25/ (μg/kg)	P50/ (μg/kg)	P75/ (μg/kg)	P95/ (μg/kg)	超标数(份)	超标率/%
县(区)1	47	ND ~ 35. 20	2.32	0.05	0.05	1.30	17.68	1	2.13
县(区)2	51	ND ~ 57. 10	4.14	0.05	0.05	2.16	40.22	3	5.88
县(区)3	200	ND ~ 109.00	5.33	0.05	0.05	3.64	34.25	14	7.00
县(区)4	27	ND ~64.80	7.07	0.05	0.48	1.79	54.04	4	14.81
县(区)5	63	ND ~36.50	1.46	0.05	0.05	0.99	7.25	1	1.59
县(区)6	40	ND ~ 19.50	1.49	0.05	0.24	0.91	11.75	0	
县(区)7	68	ND ~ 19.60	1.06	0.05	0.05	0.58	6.17	0	
城市	160	ND ~42.40	2.84	0.05	0.05	1.41	17.89	5	3.13
农村	336	ND ~ 109.00	4.00	0.05	0.05	1.48	27.89	18	5.36
全市	496	ND ~ 109.00	3.63	0.05	0.05	1.44	19.61	23	4.64
预包装花生油	6	ND ~ 2.88	0.18	0.05	0.24	1.21	1.21	0	

2.2 梧州市土榨花生油中 AFB₁膳食暴露量及风险 评估

表 2 为梧州市土榨花生油中 AFB₁ 暴露量及风险评估。由表 2 可见:梧州市 2021 年土榨花生油的 AFB₁平均膳食暴露量为 1.67 ng/(kg·d),其中县(区)4 最高,为 3.25 ng/(kg·d),为全市平均值的 1.95 倍;农村平均膳食暴露量为城市平均膳食暴露量的 1.42 倍;女性平均膳食暴露量高于男性,为其 1.13 倍;试验分析的各年龄段农村组平均膳食暴露

量是各年龄段城市组平均膳食暴露量的 1.41 ~ 1.71 倍,6~11 岁农村男性组、女性组平均膳食暴露量最高,约为全市平均膳食暴露量的 2 倍。各分组的平均 MOE 在 118~822 之间,远小于 10 000;各县(区)分组的 MOE 中 P75 在 239~1 502 之间,P95 在 16~141 之间,均低于 10 000。以上初步分析表明 2021 年梧州市居民通过土榨花生油摄入 AFB₁健康风险较高。

表 2 梧州市土榨花生油中 AFB, 暴露量及风险评估

表 2 梧州市土榨花生油中 AFB ₁ 暴露量及风险评估 (休) 休) 株) 株) 株) 株) 株) 株)														
分组	体质 量/kg	食用油摄入量/ (g/(kg・d))			P50	P75		 最大值	平均值	P25	P50	P75	P95	最大值
县(区)1	56.59	25.99	1.07	0.02		0.60		16. 17	375	17 419	17 419	670	49	25
县(区)2	56.59	25.99	1.90	0.02	0.02	0.99	18.47	26.22	210	17 419	17 419	403	22	15
县(区)3	56.59	25.99	2.45	0.02	0.02	1.67	15.73	50.06	163	17 419	17 419	239	25	8
县(区)4	56.59	25.99	3.25	0.02	0.22	0.82	24. 82	29.76	123	17 419	1 814	487	16	13
县(区)5	56.59	25.99	0.67	0.02	0.02	0.45	3.33	16.76	597	17 419	17 419	880	120	24
县(区)6	56.59	25.99	0.68	0.02	0.11	0.42	5.40	8.96	585	17 419	3 629	957	74	45
县(区)7	756.59	25.99	0.49	0.02	0.02	0.27	2.83	9.00	822	17 419	17 419	1 502	141	44
6~11 岁 城市男性	27.99	23.07	2.34	0.04	0.04	1.16	14.75	34.95	171	9 706	9 706	344	27	11
6~11 岁 城市女性	27.33	23.07	2.40	0.04	0.04	1.19	15. 10	35.79	167	9 477	9 477	336	26	11
6~11 岁 农村男性	27.99	23.07	3.30	0.04	0.04	1.22	22.99	89.84	121	9 706	9 706	328	17	4
6~11 岁 农村女性	27.33	23.07	3.38	0.04	0.04	1.25	23.54	92.01	118	9 477	9 477	320	17	4
12~14 岁 城市男性	48.07	23.07	1.36	0.02	0.02	0.68	8.59	20.35	293	16 669	16 669	591	47	20
12~14 岁 城市女性		23.07	1.47	0.03	0.03	0.73	9. 24	21.89	273	15 494	15 494	549	43	18
12~14岁 农村男性	39.66	23.07	2.33	0.03	0.03	0.86	16. 22	63.40	172	13 753	13 753	465	25	6
12~14岁 农村女性	39.95	23.07	2.31	0.03	0.03	0.85	16. 11	62.94	173	13 853	13 853	468	25	6
15~17 岁 城市男性		23.07	1.12	0.02	0.02	0.56	7.07	16.76	356	20 241	20 241	718	57	24
15~17岁 城市女性	48.43	23.07	1.35	0.02	0.02	0.67	8.52	20. 20	296	16 794	16 794	596	47	20
15~17岁 农村男性	51.02	23.07	1.81	0.02	0.02	0.67	12.61	49. 29	221	17 692	17 692	598	32	8
15~17岁 农村女性	18 13	23.07	1.91	0.02	0.02	0.71	13. 29	51.92	210	16 794	16 794	567	30	8
18~60 岁 城市	59.27	26.48	1.27	0.02	0.02	0.63	7.99	18.94	315	17 906	17 906	635	50	21
18~60 岁 农村	54.47	26.48	1.94	0.02	0.02	0.72	13.56	52.99	206	16 456	16 456	556	30	8
60 岁以上 城市	59.27	26. 29	1.26	0.02	0.02	0.63	7.94	18.81	318	18 036	18 036	640	50	21

分组 体质 量/kg	体质	食用油摄入量/	膳食暴露量/(ng/(kg·d))						MOE					
	$(g\!/(kg\boldsymbol{\cdot}d))$	平均值	P25	P50	P75	P95	最大值	平均值	P25	P50	P75	P95	最大值	
60 岁以 上农村	54.47	26. 29	1.93	0.02	0.02	0.71	13.46	52.61	207	16 575	16 575	560	30	8
男性	61.32	26.31	1.56	0.02	0.02	0.62	8.41	46.77	257	18 645	18 645	647	48	9
女性	53.01	25.72	1.76	0.02	0.02	0.70	9.51	52.89	227	16 488	16 488	573	42	8
城市	59.27	27.03	1.30	0.02	0.02	0.64	8.16	19.34	309	17 542	17 542	622	49	21
农村	54.47	25. 18	1.85	0.02	0.02	0.68	12.89	50.39	216	17 306	17 306	585	31	8
全市	56.59	25.99	1.67	0.02	0.02	0.66	9.01	50.06	240	17 419	17 419	605	44	8

3 结 论

本文参考《2010—2012 年广西壮族自治区居民营养健康状况调查报告》数据,采用点评估方法,对2021 年广西梧州市居民通过土榨花生油摄人 AFB₁进行膳食暴露量计算及风险评估,结果表明:随机抽取的496 份土榨花生油中,AFB₁检出率为40.3%,含量在0.12~109.00 µg/kg之间,平均含量为3.63 µg/kg,超标率为4.64%,居民平均 AFB₁膳食暴露量为1.67 ng/(kg·d),平均 MOE 为240;男性AFB₁膳食暴露量低于女性,城市低于农村,而 MOE 正好相反。数据分析表明,梧州市居民通过土榨花生油摄入 AFB₁潜在风险较高,建议加强对小作坊土榨花生油监管力度,持续改善土榨花生油中 AFB₁超标现象,保障土榨花生油食品安全。

参考文献:

- [1] 杨博磊,张秀娟,王刚,等. 我国土榨花生油黄曲霉毒素 B_1 及圆弧偶氮酸毒素污染调查 [J]. 中国油脂,2020,45 (9):34-37,53.
- [2] 殷国英,刘思超,廖灵灵. 植物油中黄曲霉毒素 B_1 的污染状况调查分析[J]. 预防医学情报杂志,2017,33(6): 593-596.
- [3] 周凯,徐振林,曾庆中,等. 花生(油)中黄曲霉毒素的污染、 控制与消除[J]. 中国食品学报,2018,18(6):229-239.
- [4] 吴基任,潘望,谭高好,等. QuEChERS 超高效液相色谱-串联质谱法测定花生及土榨花生油中9种真菌毒素[J].食品安全质量检测学报,2021,12(10);3927-3935.
- [5] 吴限鑫,林秋君,郭春景,等. 国内外主要粮油产品中真菌毒素限量、检测标准及风险评估现状分析[J]. 中国粮油学报,2019(9):130-138.
- [6] 苏碧玲,谢维平,欧阳燕玲,等. QuEChERS 净化 超高效液相色谱 串联质谱法测定粮食制品中 4 种真菌毒素[J]. 中国食品卫生杂志,2018,30(1):34 37.
- [7] 郑娟梅,王海波,李昌宝,等. 紫外 LED 冷光降解黄曲霉毒素 B_1 技术对花生油品质影响的研究 [J]. 食品安全质量检测学报,2020,11(8);2410-2420.
- [8] 梁剑锋,李亚. 小油坊黄曲霉毒素 B₁紫外光降解技术模拟及脱毒效果研究[J]. 粮食与食品工业,2017,24(4):

15 - 18,22.

- [9] 赖君智. 广东省 D 市花生油小作坊食品安全监管研究 [J]. 现代食品,2020(2):56-59.
- [10] 廖玉婷. 花生油抽检报告:黄曲霉毒素超标成不合格主 因,鲁花、金龙鱼、福临门更可靠[J]. 消费者报道,2020 (1);26-28.
- [11] 叶艺娟,陈俏嫦,黄振波,等.河源市市售食用植物油污染状况调查分析[J].中国卫生检验杂志,2020,30(20);2532-2534.
- [12] 卢宇芳,陈杰,刘银品. 2015 年广西部分城市餐饮环节 食用植物油中黄曲霉毒素 B_1 检测结果分析 [J]. 应用 预防医学, 2018, 24(4):307 308.
- [13] 王春双,范云燕,龙兮,等. 南宁市粮油食品中黄曲霉毒素 B₁ 的暴露风险评估[J]. 现代预防医学,2020,47 (2);252-255.
- [14] 宋美英,乐丽华,罗钰珊,等.广东小作坊生产花生油中 黄曲霉毒素 B_1 膳食暴露及风险评估 [J].中国油脂, 2019,44(4):96 101.
- [15] 侯丰. 土榨花生油大肆掺假致癌物严重超标[N]. 粮油市场报,2015-05-09(B01).
- [16] 周少君,黄湘东,汪廷彩,等.广东省常见发酵茶中黄曲 霉毒素 B_1 污染现状及暴露评估[J].中国食品卫生杂志,2018,30(1):93-98.
- [17] 唐振柱,方志峰,刘展华,等. 2010—2012 年广西壮族自治区居民营养健康状况调查报告[M]. 南宁:广西科学技术出版社,2015.
- [18] European Food Safety Authority. Opinion of the scientific committee on a request from EFSA related to aharmonised approach for risk assessment of substances which are both genotoxic and carcinogenic[J]. EFSA J,2005,3(10): 1-31.
- [19] 梁馨予,陈凤,黎强,等.广西玉林市小作坊花生油中黄曲霉毒素 B₁膳食暴露及风险评估[J]. 中国油脂, 2022,47(1);131-136.
- [20] European Food Safety Authority. Risk assessment of aflatoxins in food [J/OL]. EFSA J, 2020, 18 (3): 6040 [2021 02 03]. https://doi. org/10. 2903/j. efsa. 2020. 6040.