孙 通,胡 田,许文丽,等.基于UVE-GA变量优选的山茶油可见/近红外光谱掺假鉴别[J].中国油脂,2013,38(10):.[SUN Tong,HU Tian,XU Wenli,etc.Adulteration discrimination of oil-tea camellia seed oil by Vis/NIR spectra and UVE-GA method[J].China Oils and Fats,2013,38(10):.]
基于UVE-GA变量优选的山茶油可见/近红外光谱掺假鉴别
Adulteration discrimination of oil-tea camellia seed oil by Vis/NIR spectra and UVE-GA method
  
DOI:
中文关键词:  可见/近红外光谱  UVE-GA  掺假鉴别  山茶油
英文关键词:visible/near infrared  UVE-GA  adulteration discrimination  oil-tea camellia seed oil
基金项目:
作者单位
孙 通  
胡 田  
许文丽,等  
摘要点击次数: 1684
全文下载次数: 0
中文摘要:
      利用可见/近红外光谱结合无信息变量消除-遗传算法 (UVE-GA)变量选择方法对山茶油和掺杂低比例菜籽油(1%~10%)的山茶油进行鉴别分类,并应用线性判别分析 (LDA)方法建立分类模型。结果表明:UVE-GA是一种有效的波长变量选择方法,能简化分类模型和提高分类模型精度;UVE-GA-LDA分类模型适用于掺杂2%以上菜籽油的山茶油鉴别分类,其分类正确率为100%;对掺杂1%菜籽油的山茶油鉴别分类正确率有待提高,其分类正确率仅为50%。
英文摘要:
      Pure oil-tea camellia seed oil and oil-tea camellia seed oils adulterated with 1%-10% of rapeseed oils were discriminated and classified by visible/near infrared (Vis/NIR) spectra combined with uninformative variable elimination-genetic algorithm (UVE-GA), and classification model was developed by linear discriminant analysis (LDA). The results indicated that UVE-GA was an efficient wave length variable selection method, and the classification model could be simplified and improved by UVE-GA. UVE-GA-LDA classification model was suitable for discriminating oil-tea camellia seed oil adulterated with more than 2% of rapeseed oil, and the correction rate of classification was 100%, while the correction rate of classification for oil-tea camellia seed oil adulterated with 1% of rapeseed oil was only 50%, which need to be improved.
查看全文   查看/发表评论  下载PDF阅读器
关闭
《中国油脂》杂志社 官方网站
地址:西安市劳动路118号 邮编:710082
电话:029-88617441 88621360 88626849 传真:029-88625310
您是第12421263位访客  京ICP备09084417号