吴雪辉.红外光谱快速测定油茶籽油脂肪酸组成的模型建立[J].中国油脂,2022,47(2):124~128.[WU Xuehui.Establishment of rapid detection model of fatty acid composition of oil-tea camellia seed oil by infrared spectroscopy[J].China Oils and Fats,2022,47(2):124~128.]
红外光谱快速测定油茶籽油脂肪酸组成的模型建立
Establishment of rapid detection model of fatty acid composition of oil-tea camellia seed oil by infrared spectroscopy
  
DOI:
中文关键词:  油茶籽油  脂肪酸组成  红外光谱  支持向量机  人工神经网络  模型
英文关键词:oil-tea camellia seed oil  fatty acid composition  infrared spectroscopy  support vector machine  artificial neural network  model
基金项目:广东省林业科技计划项目(2019-02);广东省林业科技创新项目(2017KJCX005)
作者单位
吴雪辉 华南农业大学 食品学院广州510642 
摘要点击次数: 1107
全文下载次数: 766
中文摘要:
      通过气相色谱和傅里叶红外光谱仪测定86个油茶籽油样本的脂肪酸组成和红外光谱图,采用支持向量机(SVM)和BP人工神经网络(ANN)的非线性建模方法,构建油茶籽油中主要脂肪酸的定量回归模型。结果表明:ANN建立的油酸和棕榈酸定量回归模型精确度比SVM高,校正集的相关系数(R)分别为0.998 7和0.945 1,预测集的相关系数分别为0.955 7和0.926 2,相对标准偏差分别小于1%和5%;SVM和ANN建立的亚油酸定量分析模型精确度都非常高,相对标准偏差均小于1%。说明红外光谱用于油茶籽油中主要脂肪酸的快速检测是完全可行的。
英文摘要:
      The fatty acid composition and infrared spectra of 86 kinds of oil-tea camellia seed oil samples were determined by gas chromatography and Fourier transform infrared spectrometer, and the nonlinear modeling methods of support vector machine (SVM) and BP artificial neural network (ANN) were used to construct the quantitative regression model of main fatty acids in oil-tea camellia seed oil. The results showed that the quantitative regression models of oleic acid and palmitic acid established by ANN were more accurate than those by SVM, the correlation coefficients(R) of the correction set and the prediction set were 0.998 7, 0.945 1 and 0.955 7, 0.926 2, respectively, and the relative standard deviations were less than 1% and 5%, respectively. The accuracies of linoleic acid quantitative analysis models established by SVM and ANN were both very high, and the relative standard deviation was both less than 1%. It showed that infrared spectroscopy was feasible for the rapid detection of main fatty acids in oil-tea camellia seed oil.
查看全文   查看/发表评论  下载PDF阅读器
关闭
《中国油脂》杂志社 官方网站
地址:西安市劳动路118号 邮编:710082
电话:029-88617441 88621360 88626849 传真:029-88625310
您是第12423231位访客  京ICP备09084417号