Identification of four kinds of edible oils by terahertz time-domain spectroscopy
  
DOI:
KeyWord:edible oil  terahertz time-domain spectroscopy  principal component analysis  support vector machine  prediction model
FundProject:
Author NameAffiliation
LIAN Feiyu, FU Maixia, GE Hongyi  
Hits: 1492
Download times: 0
Abstract:
      Delay characteristics and refractive index characteristics of four kinds of edible oils (black sesame oil, traditional sesame oil, sesame oil, peanut oil) in the range of 0.2-1.6 THz were investigated by terahertz time-domain spectroscopy(THz-TDS).Principal component analysis (PCA) was employed to extract feature data according to the accumulative contribution rates. The top four principal components (accumulative contribution rate above 95%) were selected, and then a support vector machine (SVM) method was applied. The results showed that by choosing the appropriate kernel function and its parameters of SVM, the samples were identified with an accuracy of 93%.Furthermore, compared with principal component regression, partial least squares regression, and back-propagation neural networks, PCA-SVM had a more prominent classification performance and also indicated that the THz-TDS technology combined with PCA-SVM was efficient and feasible for identifying different kinds of edible oils.
View full text   View/Add Comment  Download reader
Close
Magazine Press of CHINA OILS AND FATS
Address:Laodong Road 118 , Lianhu District, Xi 'an City, Shaanxi Province, China Postcode:710082
Phone:008602988617441;008602988621360 ;008602988626849 Fax:008602988625310
You are the number  1040343  Visitors  京ICP备09084417号