|
Effect of calcium ions on storage properties and astaxanthin delivery efficiency of DHA algae oil-loaded emulsion using flaxseed gum-perilla protein isolate |
|
DOI: |
KeyWord:DHA algae oil astaxanthin flaxseed gum perilla protein isolate emulsion delivery system |
FundProject:湖北省重点研发计划项目(2020BCA086);国家自然科学基金项目(32001740);武汉市企业技术创新项目(2020020602012122) |
|
Hits: 1440 |
Download times: 1079 |
Abstract: |
DHA algae oil is an important non-animal source for supplementing omega-3 polyunsaturated fatty acids (ω-3 PUFA), but due to its poor water solubility and easy oxidation to produce bad flavor, its intake route is greatly restricted. Accordingly, high-pressure micro-jet technology and layer by layer (LBL) were used to prepare DHA-loaded flaxseed gum (FG, mass fraction 0.4%)-perilla protein isolate (PPI, mass fraction 0.225%) double-layer emulsion, focusing on the effect of calcium ion addition (0%-0.5%) on the stability of the above-mentioned double-layer emulsion system. At the same time, the INFOGEST in vitro simulated digestion model was used to explore the digestion characteristics of DHA in PPI -DHA algae oil single-layer emulsion, FG-PPI -DHA algae oil double-layer emulsion, and Ca2+-FG-PPI -DHA algae oil double-layer emulsion, as well as the efficiency of astaxanthin delivery by the above three systems, and its internal mechanism was explained by monitoring its particle size distribution, charge characteristics and microscopic state changes during the digestion process. The results showed that after 20 d storage of the DHA algae oil double-layer emulsion, the particle size and Zeta-potential of the double-layer emulsion without Ca2+ decreased from 10.4 μm to 4.3 μm, from -23 mV to -33 mV, respectively, but for the double-layer emulsion with 0.4% Ca2+ addition,the particle size and Zeta-potential did not change significantly, the emulsion droplets were evenly distributed, and there was no delamination, flocculation, or sedimentation.After 20 d storage of the DHA algae oil double-layer emulsion, the Turbiscan anti-gravity stability index (TSI) of the Ca2+-added double-layer emulsion was significantly improved compared with the non-Ca2+-added double-layer emulsion. During the simulated digestion process of the three emulsion systems, the release of free fatty acids in the three systems was 68.88%, 50.84% and 52.32% respectively, and the bioavailability of astaxanthin in the simulated digestion process was 47.42%, 1254% and 9.66%, respectively. It shows that the addition of Ca2+ is beneficial to the stable storage of the DHA algae oil double-layer emulsion, but has a certain retarding effect on the release of fatty acids and astaxanthin during the digestion. The research results provide an important theoretical basis for designing a targeted delivery system. |
View full text View/Add Comment Download reader |
Close |
|
|
|