|
Differences of oxidative stability and volatile components between fragrant and refined rapeseed oils |
|
DOI: |
KeyWord:fragrant rapeseed oil refined rapeseed oil accelerated oxidation experiment oxidative stability volatile component simultaneous distillation extraction combined with gas chromatography-mass spectrometry(SDE-GC-MS) |
FundProject: |
Author Name | Affiliation | LIU Yulan1,2, SUN Guohao1, WANG Xiaolei2, MA Yuxiang1, ZHANG Hui3, JIAO Shanhai3 | 1.College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001,China;2.Henan University of Technology Design and Research Academy, Zhengzhou 450001,China;3.Hainan Ausca International Oils and Grains, Ltd.,Danzhou 571700,Hainan,China |
|
Hits: 1294 |
Download times: 934 |
Abstract: |
An Schaal oven accelerated oxidation experiment was used to examine the differences of oxidative stability and volatile components between fragrant and refined rapeseed oils.The results showed that based on the peroxide value reaching the national standard limit (≤ 5 mmol/kg), the predicted shelf life of refined and fragrant rapeseed oils were 64 d and 80 d, respectively, and the oxidative stability of fragrant rapeseed oil was considerably better than that of refined rapeseed oil. The simultaneous distillation extraction combined with gas chromatography-mass spectrometry (SDE-GC-MS)was used to detect the volatile components in the two kinds of rapeseed oil,and the results revealed that 84 volatile components of 10 categories and 51 volatile components of 6 categories were detected in the initial fragrant rapeseed oil and refined rapeseed oil, respectively, with total amounts of 11 110.78 μg/kg and 3 831.28 μg/kg. The most abundant component in fragrant rapeseed oil was glucosinolate degradation products, followed by alkene and phenols, accounting for 32.04%, 22.74% and 22.22% of the total, respectively. The most abundant component in refined rapeseed oil was phenols, followed by aldehydes and ketones, accounting for 30.32%,23.18% and 16.39% of the total, respectively, while glucosinolate degradation products, heterocyclic, esters and alcohols were not detected. At the end of the 35 d experiment, the total amount of volatile components in fragrant rapeseed oil and refined rapeseed oil increased significantly to 51 729.62 μg/kg and 45 671.79 μg/kg, respectively, and aldehydes became the highest volatile components in both rapeseed oils, accounting for 60.30% and 68.07% of the total, respectively.The glucosinolate degradation products in fragrant rapeseed oil decreased significantly to only 2.64% of the total,while the content of heterocyclic substances was significantly reduced and the contents of ketones, olefins and alkanes significantly increased.The content of ketones, alkanes and olefins in refined rapeseed oil increased, while the content of alcohols increased from the initial non-detect to 13.10% of the total. The volatile component principal component analysis revealed that the differences between the two original rapeseed oils were mostly caused by benzoylpropionitrile, 3-methylcrotononitrile, 2-pinene, 5-hexenenitrile and 4-ethenyl-2,6-dimethoxyphenol,which contributed to fragrant rapeseed oil’s unique flavors. In the late stage of accelerated oxidation experiment, the differences between the two rapeseed oils were mainly caused by 1-penten-3-ol, 1-octen-3-ol, (E)-2-pentenal, (E)-2-heptenal, hexanal, nonanal, methylheptenone, (E,E)-3,5-octadien-2-one, leucocalyene and methylcyclohexene, and the first five substances were related to refined rapeseed oil, mostly linoleic acid oxidation products, while the latter five substances were mainly related to fragrant rapeseed oil. The results clarified the comprehensive quality differences of rapeseed oil products produced by different processes and could provide support for the development of precise quality and freshness preservation technology for different rapeseed oil products. |
View full text View/Add Comment Download reader |
Close |
|
|
|