|
Optimization of preparation of astaxanthin nanolipid carrier based on central composite design method |
|
DOI: |
KeyWord:astaxanthin nanolipid carrier central composite design method thermal stability |
FundProject:高原人工湿地生态平衡构建与应用示范(2021-SF-139) |
|
Hits: 2157 |
Download times: 2572 |
Abstract: |
In order to improve the bioavailability and increase the stability of astaxanthin, astaxanthin nanolipid carrier (AST-NLC) was prepared by the homogeneous emulsification-probe ultrasonic method. The preparation process of AST-NLC was optimized by single factor experiment and central composite design method with particle size and encapsulation rate as indexes, and the AST-NLC prepared was structurally characterized by X-ray diffraction (XRD) and Fourier infrared spectroscopy(FT-IR) and tested for thermal stability at 4, 25 ℃ and 50 ℃. The results showed that the optimal process conditions for preparing AST-NLC were mass ratio of glycerol tristearate to medium chain triglyceride 1∶ 11 (total mass 0.99 g), emulsifier dosage (Tween-80+soybean lecithin, mass ratio 1∶ 1)3.8%(based on water phase mass), oil-water volume ratio 1∶ 34, homogeneous speed 5 000 r/min, ultrasonic time 2 min, astaxanthin dosage 2.0 mg. Under the optimal conditions, the AST-NLC was prepared with a particle size of (79.30±1.21) nm, a polymer dispersity index(PDI) of 0.01±0.01, an encapsulation rate of (81.36±1.84)%, and Zeta potential(-18.13±2.83)mV. The structural analysis revealed that astaxanthin in AST-NLC was encapsulated in liposomes in the state of molecules. The thermal stability results showed 4 ℃ was more favorable for the preservation of AST-NLC. In conclusion, AST-NLC with small particle size, homogenous dispersion and high encapsulation rate was successfully prepared. |
View full text View/Add Comment Download reader |
Close |
|
|
|