In order to explore the method of UV-Vis-NIR reflection spectroscopy to identify blended oil-tea camellia seed oil(CAO), 244 samples of CAO adulterated with soybean oil, rapeseed oil, peanut oil and corn oil were prepared according to different adulteration amounts, and the reflectance spectra of the prepared samples in the range of 200-1 100 nm were collected by an experimental platform built independently. After pretreating the raw spectra with SG-continuous wavelet transform (CWT), the samples were divided into correction and prediction sets using the Kennard-Stone (K-S) algorithm in a ratio of 2∶ 1. Competitive adapative reweighting sampling(CARS)algorithm, successive projections algorithm (SPA), bootstrapping soft shrinkage(BOSS) algorithm, and iteratively variable subset optimization (IVSO) algorithm were used for characteristic wavelength selection, and rapid identification models based on support vector machine (SVM), extreme learning machine (ELM), and random forest (RF) were established for CAO adulteration amount, respectively, and the characteristics of characteristic wavelength were studied. The results showed that the SVM model established after the SG-CWT (L5) pretreating and BOSS characteristic wavelength screening could discriminate the amount of adulteration 1% and above, and the model obtained the best penalty factor c ( 5.278 0) and kernel function γ (0.108 8) under the ten-fold cross-validation and grid search method, with R2P, RMSEP and MAEP of 0.998 5, 0.013 4 and 0.010 2, respectively. At the same time, the degree of aggregation and steepness of the characteristic wavelength had some influence on the model prediction results. In conclusion, the established rapid prediction model for the adulteration amount of oil-tea camellia seed oil based on reflection spectroscopy has low error and good prediction effect. |