Evolution of aldehydes in high oleic acid oil during storage and heating
  
DOI:10.19902/j.cnki.zgyz.1003-7969.230306
KeyWord:high oleic acid oil  temperature  characteristic aldehyde  hydroperoxide  oxidative index
FundProject:海南省自然科学基金项目(219QN152)
Author NameAffiliation
GE Jiachen1,LI Pengyan1,DENG Ruijue1,LI Chuan1,2,CAO Jun1,2 (1.School of Food Science and Engineering, Hainan University, Haikou 570228, China
2.Hainan Provincial Key Laboratory of Food Nutrition and Functional Food, Haikou 570228, China) 
Hits: 1333
Download times: 2261
Abstract:
      In order to explore the influence of temperature on the formation of aldehydes in high oleic acid oil and its feasibility as an evaluation index of oil oxidation, typical high oleic acid oils (olive oil and oil-tea camellia seed oil) were selected as experimental objects, and they were stored at fridge (4 ℃) and room (26 ℃) for 12 months and heated at 90, 150 ℃ and 210℃ for 12 h,and the variation rules of the contents of five aldehydes (nonanal, octanal, decanal, trans-2- decenal and trans-2- undecenal) during the treatment and possible formation mechanism were analyzed. In addition, the correlation between aldehydes and traditional oil oxidation evaluation indexes was analyzed.The results showed that saturated aldehydes were dominant when stored at fridge and room, especially nonanal had a significant increase. During heating treatment, with the increase of heating temperature, unsaturated aldehydes took the dominant status gradually, the growth rate of trans-2- decenal and trans-2-undecenal progressively increased. Based on the oleic acid auto-oxidation theory, the production of nonanal was mainly caused by the cracking of 9-ROOH and 10-ROOH hydroperoxides. Trans-2- decenal and trans-2- undecenal were produced by the cracking of 9-ROOH and 8-ROOH hydroperoxides, respectively. The correlation analysis found that characteristic aldehydes were linearly related to the total oxidation value during oil storage and unsaturated characteristic aldehydes were linearly related to p-anisidine value during heating treatment. Therefore, the content and types of aldehydes produced in the oxidation process of high oleic acid oil were closely related to temperature. Aldehydes can be used as a new index for the evaluation of oil oxidation degree, and combined with traditional oxidative evaluation indexes, the primary and secondary oxidation degree of oil can be more comprehensively evaluated.
View full text   View/Add Comment  Download reader
Close
Magazine Press of CHINA OILS AND FATS
Address:Laodong Road 118 , Lianhu District, Xi 'an City, Shaanxi Province, China Postcode:710082
Phone:008602988617441;008602988621360 ;008602988626849 Fax:008602988625310
You are the number  945052  Visitors  京ICP备09084417号